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A New Algorithm to Compute the
Discrete Cosine Transform

BYEONG GI LEE

Abstract|A new algorithm is introduced for the 2m-point dis-

crete cosine transform. This algorithm reduces the number of

multiplications to about half of those required by the existing

eÆcient algorithms, and it makes the system simpler.

I. Introduction

During the past decade, the discrete cosine transform (DCT)

[1] has found applications in speech and image processing. Var-

ious fast algorithms have been introduced for reducing the

number of multiplications involved in the transform [2]-[6]. In

this correspondence we propose an additional algorithm which

not only reduces the number of multiplications but also has a

simpler structure. We refer to this algorithm as the FCT (fast

cosine transform), since it is similar to the FFT (fast Fourier

transform). The number of real multiplications it requires is

about half that required by the existing eÆcient algorithms.

II. Algorithm Derivation

We denote the DCT of the data sequence x(k), k = 0, 1, � � �,
N � 1, by X(n), n = 0, 1, � � �, N � 1. Then we have [1]

N�1X
n=0

e(n)X(n)cos[�(2k + 1)n=2N ]

k = 0; 1; � � � ; N � 1 (1)

and

X(n) =
2

N
e(n)

N�1X
k=0

x(k)cos[�(2k + 1)n=2N ]

n = 0; 1; � � � ; N � 1 (2)

where

e(n) =

�
1=
p
2; if n = 0;

1; otherwise:
(3)

We consider (1), which is the inverse DCT (IDCT), and de�ne

C such that

C
(2k+1)n
2N = cos[�(2k + 1)n=2N ]: (4)

Then the N -point IDCT becomes

x(k) =

N�1X
k=0

bX(n)C
(2k+1)n
2N ; k = 0; 1; � � � ; N � 1 (5)

where bX(n) = e(n)X(n) (6)
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Decomposing x(k) into even and odd indexes of n (assuming

that N is even), we can rewrite (5) as

x(k) = g(k) + h
0(k) (7a)

x(N � 1� k) = g(k)� h
0(k); k = 0; 1; � � � ; N=2� 1 (7b)

where

g(k) =

N=2�1X
n=0

bX(2n)C
(2k+1)2n
2N (8a)

h
0(k) =

N=2�1X
n=0

bX(2n+ 1)C
(2k+1)(2n+1)
2N (8b)

Clearly, g(k), k = 0; 1; � � � ; N=2�1, forms an N/2-point IDCT,

since

C
(2k+1)2n
2N = C

(2k+1)n
N = C

(2k+1)n

2(N=2)
(9)

We rewrite h0(k) in the form

h
0(k) =

N=2�1X
n=0

bX 0(2n+ 1)C
(2k+1)n

2(N=2)
(10)

which is another N/2-point IDCT. Since

2C
(2k+1)
2N C

(2k+1)(2n+1)
2N = C

(2k+1)2n
2N + C

(2k+1)2(n+1)
2N (11)

we have

2C
(2k+1)
2N h

0(k) =

N=2�1X
n=0

bX(2n+ 1)C
(2k+1)2n
2N

+

N=2�1X
n=0

bX(2n+ 1)C
(2k+1)2(n+1)
2N : (12)

So, if we de�ne bX(2n� 1)jn=0 = 0 (13)

then

N=2�1X
n=0

bX(2n+ 1)C
(2k+1)2(n+1)
2N

N=2�1X
n=0

bX(2n� 1)C
(2k+1)2n
2N (14)

because

C
(2k+1)2(N=2)
2N = C

(2k+1)
2 = 0: (15)

Thus (12) can be rewritten as

2C
(2k+1)
2N h

0(k) =

N=2�1X
n=0

( bX(2n+1)+ bX(2n�1))C
(2k+1)2n
2N (16)
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which has the form of (10). Now we de�ne

G(n) = bX(2n); (17a)

H(n) = bX(2n+ 1) + bX(2n� 1)

n = 0; 1; � � � ; N=2� 1; (17b)

and

g(k) =

N=2�1X
n=0

G(n)C
(2k+1)n

2(N=2)
; (18a)

h(k) =

N=2�1X
n=0

H(n)C
(2k+1)n

2(N=2)
;

k = 0; 1; � � � ; N=2� 1: (18b)

Then (7), (8), and (16)-(18) �nally yield

x(k) = g(k) + (1=(2C
(2k+1)
2N ))h(k); (19a)

x(N � 1� k) = g(k)� (1=(2C
(2k+1)
2N ))h(k);

k = 0; 1; � � � ; N=2� 1: (19b)

Therefore, we have decomposed the N -point IDCT in (5) into

the sum of two N/2-point IDCT's in (18). By repeating this

process, we can decompose the IDCT further.

We can also decompose the DCT in a similar manner. Alter-

natively, the DCT can be obtained by \transposing" the IDCT-

i.e., reversing the direction of the arrows in the ow graph of

IDCT, since the DCT is an orthogonal transform.

III. Example

With N=8, (17)-(19) yield

G(n) = bX(2n); (20a)

H(n) = bX(2n+ 1) + bX(2n� 1); n = 0; 1; 2; 3 (20b)

and

g(k) =

3X
n=0

G(n)C
(2k+1)n
8 (21a)

h(k) =

3X
n=0

H(n)C
(2k+1)n
8 ; (21b)

x(k) = g(k) + (1=(2C2k+1
16 ))h(k); (22a)

x(7� k) = g(k)� (1=(2C2k+1
16 ))h(k); k = 0; 1; 2; 3 (22b)

Equations (20) and (22) respectively form the �rst and the last

stages of the ow graph in Fig.1. By repeating the above steps

on (21), we obtain the FCT ow graph for an eight-point IDCT

as shown in Fig.1.

IV. Concluding Remarks

It follows from Fig.1 that the ow graphs of the FCT and

FFT are similar. The number of real multiplications thus ap-

pears to be (N=2)log2N for an N -point FCT with N=2m,

which is about half the number required by existing eÆcient al-

gorithms. The number of additions, however, is slightly higher
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Fig. 1.

TABLE I

N

128

256

8

16

32

64

512

1024

2048

4096

31745

12171154448708

2817269010241668

81743244

20919480116

513482192292

6401614623043844

143371382651208708

307221126419460

69633675862457643012

m

7

8

3

4

5

6

9

10

11

12

29261216

Number of
Multiplications

FCTREF[4]

  Number of
Additions

FCTREF[4]

and given by (3N=2)log2N�N+1. See Table I for a comparison

with the algorithm in [4].

If Fig.1 we also note that the input sequence bX(n) is in

bit-reversed order. The order of the output sequence x(k) is

generated in the following manner: starting with the set (0,1),

form a set by adding the pre�x "0" to each element, and then

obtain the rest of the elements by complementing the existing

ones. This process results in the set (00,01,11,10), and by re-

peating it we obtain (000, 001, 011, 010, 111, 110, 100, 101).

Thus, we have the output sequence x(0), x(1), x(3), x(2), x(7),

x(6), x(4), x(5) for the case N=8; see Fig.1.
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