# Factorize Gaussian integer (JavaScript)

## Program

## Description

This JavaScript program calculates the prime factorization of the given Gaussian integer. A Gaussian integer is a complex number of the form `a` + `b``i`, where `a` and `b` are integers. This program has a limit of |`a`|, |`b`| < 2^{26}. If the number is large, the program may hang for a few seconds.

The factorization is put into the following canonical form:

If the number is 0, 1, −1,

`i`, or −`i`, then the factorization is the number itself.Otherwise the factorization begins with a factor of −1 or

`i`or −`i`if necessary. The rest are primes listed in ascending order of absolute value, breaking ties by lowest argument (angle); each of these factors have absolute value > 1 and are in the first quadrant (0 ≤ argument < π/2).

The source TypeScript code and compiled JavaScript code are available for viewing. A Java version of the code is also available.

## Examples

- −1 = (−1) (unit)
- 2 = (−
`i`) (1 +`i`) (1 +`i`) - 4 +
`i`= (4 +`i`) (prime) - 7 = (7) (prime)
- 5 + 9
`i`= (1 +`i`) (7 + 2`i`)

## Input format

The real or imaginary component can be suppressed, and they can be in either order. The 1 can be suppressed for

`i`. For example, all these are valid inputs: -0, 5i, 1+2i, -i-2Spaces are allowed anywhere in the Gaussian integer, except within a string of digits.

To indicate negative numbers, the ASCII hyphen-minus (U+002D) and the minus sign (U+2212) are both acceptable. (The output properly uses the minus sign, though.)

`j`is an acceptable synonym for`i`, for those electrical engineers out there.

## List of Gaussian primes

Table of all Gaussian primes up to norm 1000, with symmetries removed:

Number | Norm | Argument |
---|---|---|

1 + 1i | 2 | 45.00° |

2 + 1i | 5 | 26.57° |

3 + 0i | 9 | 0.00° |

3 + 2i | 13 | 33.69° |

4 + 1i | 17 | 14.04° |

5 + 2i | 29 | 21.80° |

6 + 1i | 37 | 9.46° |

5 + 4i | 41 | 38.66° |

7 + 0i | 49 | 0.00° |

7 + 2i | 53 | 15.95° |

6 + 5i | 61 | 39.81° |

8 + 3i | 73 | 20.56° |

8 + 5i | 89 | 32.01° |

9 + 4i | 97 | 23.96° |

10 + 1i | 101 | 5.71° |

10 + 3i | 109 | 16.70° |

8 + 7i | 113 | 41.19° |

11 + 0i | 121 | 0.00° |

11 + 4i | 137 | 19.98° |

10 + 7i | 149 | 34.99° |

11 + 6i | 157 | 28.61° |

13 + 2i | 173 | 8.75° |

10 + 9i | 181 | 41.99° |

12 + 7i | 193 | 30.26° |

14 + 1i | 197 | 4.09° |

15 + 2i | 229 | 7.59° |

13 + 8i | 233 | 31.61° |

15 + 4i | 241 | 14.93° |

16 + 1i | 257 | 3.58° |

13 + 10i | 269 | 37.57° |

14 + 9i | 277 | 32.74° |

16 + 5i | 281 | 17.35° |

17 + 2i | 293 | 6.71° |

13 + 12i | 313 | 42.71° |

14 + 11i | 317 | 38.16° |

16 + 9i | 337 | 29.36° |

18 + 5i | 349 | 15.52° |

17 + 8i | 353 | 25.20° |

19 + 0i | 361 | 0.00° |

18 + 7i | 373 | 21.25° |

17 + 10i | 389 | 30.47° |

19 + 6i | 397 | 17.53° |

20 + 1i | 401 | 2.86° |

20 + 3i | 409 | 8.53° |

15 + 14i | 421 | 43.03° |

17 + 12i | 433 | 35.22° |

20 + 7i | 449 | 19.29° |

21 + 4i | 457 | 10.78° |

19 + 10i | 461 | 27.76° |

22 + 5i | 509 | 12.80° |

20 + 11i | 521 | 28.81° |

23 + 0i | 529 | 0.00° |

21 + 10i | 541 | 25.46° |

19 + 14i | 557 | 36.38° |

20 + 13i | 569 | 33.02° |

24 + 1i | 577 | 2.39° |

23 + 8i | 593 | 19.18° |

24 + 5i | 601 | 11.77° |

18 + 17i | 613 | 43.36° |

19 + 16i | 617 | 40.10° |

25 + 4i | 641 | 9.09° |

22 + 13i | 653 | 30.58° |

25 + 6i | 661 | 13.50° |

23 + 12i | 673 | 27.55° |

26 + 1i | 677 | 2.20° |

26 + 5i | 701 | 10.89° |

22 + 15i | 709 | 34.29° |

27 + 2i | 733 | 4.24° |

26 + 9i | 757 | 19.09° |

20 + 19i | 761 | 43.53° |

25 + 12i | 769 | 25.64° |

22 + 17i | 773 | 37.69° |

26 + 11i | 797 | 22.93° |

28 + 5i | 809 | 10.12° |

25 + 14i | 821 | 29.25° |

27 + 10i | 829 | 20.32° |

23 + 18i | 853 | 38.05° |

29 + 4i | 857 | 7.85° |

29 + 6i | 877 | 11.69° |

25 + 16i | 881 | 32.62° |

23 + 20i | 929 | 41.01° |

24 + 19i | 937 | 38.37° |

29 + 10i | 941 | 19.03° |

28 + 13i | 953 | 24.90° |

31 + 0i | 961 | 0.00° |

31 + 4i | 977 | 7.35° |

31 + 6i | 997 | 10.95° |

All the prime numbers in the table above are located in the first octant – a number has the form `a` + `b``i` and satisfies `a` > 0, `b` ≥ 0, and `a` ≥ `b` (thus the argument is between 0° and 45°). They are listed in order of ascending norm, with ties broken by ascending argument. (“Norm” means squared absolute value.)

For each prime, a set of up to seven symmetrical primes have been excluded from the list. This is because if `z` is prime, then so are −`z`, `i``z`, −`i``z`, `z` (conjugate), −`z`, `i``z`, and −`i``z`. In terms of components, if `z` = `a` + `b``i` is prime, then respectively so are −`a` − `b``i`, −`b` + `a``i`, `b` − `a``i`, `a` − `b``i`, −`a` + `b``i`, `b` + `a``i`, and −`b` − `a``i`.

For example, 3 is prime, therefore so are −3, 3`i`, and −3`i`. For example, 5 + 2`i` is prime, therefore so are −5 − 2`i`, −2 + 5`i`, 2 − 5`i`, 5 − 2`i`, −5 + 2`i`, 2 + 5`i`, and −2 − 5`i`..