The Poisson Distribution

Project79068 Nayuki Minase

2008-04-15-Tue

Description

In the Poisson distribution, events are independent and occur at a known average rate. Suppose we have an interval (of time, space, etc.) where the expected number of events is λ. Then the probability of exactly k events occuring in that interval is given by the following:

$$
P(\lambda, k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

Usage example

Problem

If 20 cars pass a checkpoint each minute (and the traffic follows a Poisson distribution), what is the probability of 2 cars passing the checkpoint in 1 second?

Solution

$$
\begin{aligned}
& k=2 \\
& \lambda=1 / 3 \\
& P(\lambda, k)=P\left(\frac{1}{3}, 2\right)=\frac{e^{-\frac{1}{3}} \cdot \frac{1}{3^{2}}}{2!}=\frac{e^{-\frac{1}{3}}}{18}
\end{aligned}
$$

The number of events we're looking for
Because $\frac{20 \text { events }}{60 \text { seconds }}=\frac{1 / 3 \text { event }}{1 \text { second }}$
Approximately 0.0398 , or 4%

Derivation

Divide the interval in which events occur into n (discrete) slots. At each slot, the probability of an event occuring is λ / n.

By the binomial theorem, the probability of k events occuring in n trials where the success probability of each trial is λ / n is:

$$
\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}
$$

Because the Poisson distribution deals with events occuring on a continuous interval, let the number of slots be arbitrarily large. In other words, take the limit of that expression as n approaches infinity:

$$
\begin{aligned}
P(\lambda, k) & =\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} & & \\
& =\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} & & \text { Expand } \\
& =\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k} e^{-\lambda}\left(1-\frac{\lambda}{n}\right)^{-k} & & \text { By the definition of } e \\
& =\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k} e^{-\lambda} & & \text { Because } 1-\frac{\lambda}{n} \text { approaches } 1 \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{k}}\binom{n}{k} e^{-\lambda} \lambda^{k} & & \text { Expand } \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{k}} \frac{1}{k!}\left(\prod_{m=n-k+1}^{n} m\right) e^{-\lambda} \lambda^{k} & & \text { Express as a product } \\
& =\lim _{n \rightarrow \infty} \frac{1}{k!}\left(\prod_{m=n-k+1}^{n} \frac{m}{n}\right) e^{-\lambda} \lambda^{k} & & \text { Put into product } \\
& =\lim _{n \rightarrow \infty} \frac{e^{-\lambda} \lambda^{k}}{k!} & & \text { The product approaches } 1 \\
& =\frac{e^{-\lambda} \lambda^{k}}{k!} & & \text { Limit of a constant }
\end{aligned}
$$

Total probability

What is the total probability over all outcomes?

$$
\begin{array}{ll}
\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^{k}}{k!} & \\
=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} & \\
=e^{-\lambda} e^{\lambda} & \text { Extract constant out of summation } \\
=e^{0} & \text { The sum is the power series for } e^{\lambda}, \text { valid for all } \lambda \in \mathbb{R} \\
=1 & \\
\text { By laws of exponents } \\
\text { By definition of exponential function }
\end{array}
$$

As expected, the total probability is 1 , regardless of the value of the parameter λ.

