## DWITE Online Computer Programming Contest

February 2006

## Problem 1

## Points on a Line

In this particular problem, you will be given a set of points that lie on the Cartesian plane. Given two points, $\mathrm{p}_{1}$ and $\mathrm{p}_{2}$, determine how many points in the set lie on the line created by $\mathrm{p}_{1}$ and $\mathrm{p}_{2}$.

The input file (DATA11.txt for the first submission and DATA12.txt for the second submission) will contain one set of data. The first line will contain $\boldsymbol{N}$, the number of points in the set, $\mathbf{1 0}<=\boldsymbol{N}<=\mathbf{1 0 0}$. The next N lines will contain two integers each, $\boldsymbol{x}$ and $\boldsymbol{y}$, which represent the x-coordinate and the y-coordinate of the point, $\mathbf{- 1 0 0 0}$ $<=\boldsymbol{x}, \boldsymbol{y}<=\mathbf{1 0 0 0}$. After these N lines, there will be five lines that will contain the coordinates of the points $\mathrm{p}_{1}$ and $\mathrm{p}_{2 ;} \mathrm{p}_{1}$ and $\mathrm{p}_{2}$ are not part of the original set. $-1000<=\mathrm{p}_{1,} \mathrm{p}_{2}<=1000$.

The output file (OUT11.txt for the first submission and OUT12.txt for the second submission) will contain five lines of data. Each line will contain the number of points in the set that lie on the line created by $\mathrm{p}_{1}$ and $\mathrm{p}_{2}$.

| Sample Input | Sample Output |  |
| :--- | :--- | :--- |
| 12 | 2 |  |
| 0 | 0 | 4 |
| -1 | 3 | 2 |
| 1 | 3 | 1 |
| 1 | 7 |  |
| 2 | 9 |  |
| 3 | -1 |  |
| 6 | 0 |  |
| 3 | 1 |  |
| 5 | 3 |  |
| 3 | 5 |  |
| 3 | 8 |  |
| 6 | 6 |  |
| 2 | 2 | 0 | 4

## Sample Input Analysis

There are 2 points $[(1,3)$ and $(3,1)]$ from the set that lie on the line created by the two points $(2,2)$ and $(0,4)$. There are 4 points $[(3,8),(3,5),(3,1)$ and $(3,-1)]$ from the set that lie on the line created by the two points $(3,0)$ and $(3,9)$.
There are 2 points $[(6,6)$ and $(0,0)]$ from the set that lie on the line created by the two points $(2,2)$ and $(3,3)$. There is 1 point $[(-1,3)]$ from the set that lies on the line created by the two points $(0,4)$ and $(1,5)$.
There is 1 point $[(6,0)]$ from the set that lies on the line created by the two points $(3,-3)$ and $(4,-2)$.

