DWITE Online Computer Programming Contest
 February 2005

Problem 4

Matrix Chain Product

If we are given a sequence of matrices to multiply, $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$, we can multiply them in any order, since matrix multiplication is associative, to generate the product.

If we have three matrices $\mathbf{A}_{1}, \mathbf{A}_{2}$ and \mathbf{A}_{3}. The product can be generated in two ways, $\mathbf{A}_{1}\left(\mathbf{A}_{2} \mathbf{A}_{3}\right)$ or $\left(\mathbf{A}_{1} \mathbf{A}_{2}\right) \mathbf{A}_{3}$. The cost of multiplying a $\boldsymbol{n x m}$ by an $\boldsymbol{m x p}$ matrix is $\boldsymbol{n x m x p}$

So the choice of parenthesis could affect the cost of multiplying a sequence of matrices.
For example, if we have the matrices A_{1}, a 5×50 matrix, A_{2}, a 50×10 matrix and A_{3}, a 10×8 matrix, the cost of $\mathbf{A}_{\mathbf{1}}\left(\mathbf{A}_{\mathbf{2}} \mathbf{A}_{\mathbf{3}}\right)$ would be: $\left(\mathbf{A}_{\mathbf{2}} \mathbf{A}_{\mathbf{3}}\right) \quad 50 \times 10 \times 8=4000$, a resulting 50×8 matrix
$\mathbf{A}_{\mathbf{1}}\left(\mathbf{A}_{\mathbf{2}} \mathbf{A}_{\mathbf{3}}\right) \quad 5 \times 50 \times 8=2000$, a resulting 5×8 matrix
Total Cost $=4000+2000=6000$
the cost of $\left(\mathbf{A}_{\mathbf{1}} \mathbf{A}_{\mathbf{2}}\right) \mathbf{A}_{\mathbf{3}}$ would be: $\quad\left(\mathbf{A}_{\mathbf{1}} \mathbf{A}_{\mathbf{2}}\right) \quad 5 \times 50 \times 10=2500$, a resulting 5×10 matrix
$\left(\mathbf{A}_{1} \mathbf{A}_{2}\right) \mathbf{A}_{3} \quad 5 \times 10 \times 8=400$, a resulting 5×8 matrix
Total Cost $=2500+400=2900$

The input file (DATA41.txt for the first submission and DATA42.txt for the second submission) will contain 5 lines of data. Each line will contain a matrix chain. Each chain is represented by a series of positive integers, $\mathrm{p}, 0<\mathrm{p}<=100$, terminated by a 0 . For example the chain above would be "5 501080 ". Note that N matrices are represented by $\mathrm{N}+1$ non-zero numbers. $2<=\mathrm{N}<=10$.

The output file (OUT41.txt for the first submission and OUT42.txt for the second submission) will contain five lines of data. Each line will contain the lowest and highest cost of multiplying the matrix chain, in that order, separated by a single space. The highest cost will not exceed 2000000000.

Sample Input (3 sets of data only)	Sample Output
55501080	29006000
41269120	9362520
25301050	52508750

