DWITE Online Computer Programming Contest December 2004

Problem 4

Waring's Prime Number Conjecture

Waring's prime Number Conjecture states: Every odd integer n is a prime or the sum of three primes.
For example: $21=7+7+7$
$21=13+5+3$
$21=11+7+3$
$21=11+5+5$
$21=17+2+2$
$33=11+11+11$
$33=13+13+7$
$33=17+11+5$
$33=17+13+3$
$33=19+7+7$
$33=19+11+3$
$33=23+5+5$
$33=23+7+3$
$33=29+2+2$
23 is prime
The input file (DATA41.txt for the first submission and DATA42.txt for the second submission) will contain five lines of data. Each line will contain an odd positive integer, $\mathrm{n}, 3<=\mathrm{n}<=99999$.

The output file (OUT41.txt for the first submission and OUT42.txt for the second submission) will contain the number of different ways n can written as a sum of three prime numbers, order doesn't matter. If n is prime then output the word "PRIME", in upper case.

Sample Input (Only three sets given)	Sample Output
33	5
23	9

[^0]
[^0]: http://mathworld.wolfram.com/WaringsPrimeNumberConjecture.html

