
A novel idea for a new Filesystem
Storing facets as key-value pairs for individual files

Pieter Omvlee
mail@pieteromvlee.net

ABSTRACT
This paper outlines a high-level idea of new kind of a
filesystem. It takes inspiration from commonly-used third-party
applications that manage music, photos or other files. The fact
that so many people use these applications is already an
indication that the regular filesystem is not the best way to
manage these kind of files. The new filesystem will rely on
metadata to describe the different facets of individual files. As
such, this new filesystem will be more flexible because in
hierarchical filesystems, only one trail of facets can be
represented in the hierarchy.
A popular way to represent metadata is by using tags, or
keywords. We acknowledge that tags need semantic
information to allow relevant queries on the data. The semantic
meaning of the tags should be kept on a per-file basis because
words can have different meaning in different contexts.
Because of this, metadata will be kept as a key-value dictionary
for every individual file. Another way of visualizing this system
is as one large database table: the rows are the files, and the tags
are placed in the appropriate columns where the title of the
column is the semantic meaning of the tag in a cell. Viewing a
subset of files can then be done using regular SQL queries.

Keywords
Hierarchical, filesytem, Tags, Metadata, Facets, Dictionary

1. INTRODUCTION
The filesystem of all modern desktop operating systems is a
hierarchical one. The primary organizational tool is a folder
which can contain files and other folders. In this way a
hierarchy, or tree-like structure is created. It is a simple way of
organizing files, based on the metaphor of real-life office
cabinets containing file folders and files.
This basic idea has lot of problems associated with it [1], one
example being that a file can only reside in one location without
being duplicated. Researchers have known these problems since
the beginning [2], but they still have not been solved. The
difficulty here lies in the fact that these problems are on a very
deep conceptual level and what is really needed is a
fundamentally different approach to organizing files. A lot of
research has been done and many alternatives have been
suggested [3], [4], [5] but none of these ideas have yet taken it
into mainstream computing. As such, the question is still open
as to what would really be a good replacement for the current
hierarchical filesystems.

Finding a suitable alternative to current hierarchical filesystems
will be the main objective of this paper. This filesystem should
have none of the problems that plague current filesystems and it
should be easy enough to be used by the average computer user.
We will see that the principal problem of hierarchical
filesystems lies in their lack of flexibility. The problem I
described earlier is a good example of what I mean by that. In
online communities like Flickr or Delicious, users organize and
annotate files and urls with so-called ‘tags’ in a more flexible
way. Tags are keywords a user can apply to a body of
information describing what it is about. These entities can be
given any number of tags or none, if that makes sense. As such,
the user has a lot of flexibility in organizing their files. It will
not come as a surprise that many researchers have argued to
introduce tags in desktop systems and give them a a central role
there [1], [2], [8], [9]. Although I share their opinion, this paper
will introduce a fundamentally different way of looking at tags.
I share with them the opinion that we should use tags as
metadata to describe our files and distill a way of ordering out
of them. The way I differ from previous research is the question
of how to organize these tags, and in this paper I will explain
why that is and what is in my opinion a better way of managing
metadata.
Closely related to this is the observation that many users use
separate applications to manage certain kind of files.
Multimedia files like music [6] or photos [7] are good examples
of files that are often managed by dedicated applications.
Because these applications fill a void that was left open by the
filesystem, they must be offering someting of value to these
users, otherwise they wouldn’t be used. Are there lessons we
can learn from these applications and apply them to our new
filesystem-idea? How do they attempt solve the problems that
hierarchical filesystems are facing?
The main contribution of this paper is a high-level proposal for
a new filesystem, a new way to organize files. This filesystem
should have none of the deficiencies of existing hierarchical
filesystems and should be easy-to-use and flexible for the
average computer user. To find a solution, I will answer the
following questions:
• What are the problems with current hierarchical

filesystems? Why are these problems and what do they
prevent the user from doing?

• What are the characteristics of these dedicated
applications, such as those that manage music or photos?
Can we apply some of the characteristics to our
filesystem?

• We acknowledge that metadata should play a central role
in this new filesystem. Can we use tags to describe
metadata, and how should this metadata be structured?

Throughout this paper, we will see that the concept of ‘facets’
keeps reappearing. This concept is important to remember. The
ability to handle the different facets of files will be the major
requirement for this new filesystem. While I will explain later

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission.

11thTwente Student Conference on IT, Enschede, June 29th, 2009
Copyright 2009, University of Twente, Faculty of Electrical Engineering,
Mathematics and Computer Science

why I think this is so, it is the red wire through this paper and as
such important to remember.

2. HIERARCHICAL FILESYSTEMS
The metaphor of hierarchical filesystems is based on the real-
life file folders used in office cabinets. Over time, this idea
evolved to allowing nested folders from the original systems
which supported folders only one level deep. A commonly
heard argument in defense of the current filesystems is that the
metaphor makes it very easy to understand the system. When
one critically looks at this argument, it will be obvious that this
argument doesn’t hold. In real life, file folders cannot contain
file folders themselves.
It has already been mentioned a few times that there are big
problems with current hierarchical filesystems. The most
important and prolific problems are listed below but there
certainly is overlap between individual points. In fact, one
concept lies at the root of several of these problems.

2.1. A unique path to a file
A single file one disk can only reside in one folder. After having
saved a document, one can of course move it to create a
completely different folder structure if that makes sense. It is
however impossible to keep two alternative folder structures,
with the same files in both hierarchies, at the same time. A file
can only exist in a single location, and because of that there’s
only a single categorization possible, even though multiple
classifications can make sense [1]. When we come back to this
issue later, We will see it lies at the root of all other problems
and this will be the first problem we tackle later on by
introducing the concept of facets to get aroud the single-
categorization issue.
This inability is an unnecessary artifact from the paper-based
world where a piece of paper can really only exist in one place.
There is no need for such a limitation in the digital age, and
there should be nothing from stopping a file from belonging to
multiple folders if that makes sense. It has to be noted that just
as in the real world, creating copies is not a solution because if
one copy of the file changes, the others will not.
This first issue has so many consequences because, to repeat a
previous statement, it means that there is only one hierarchy, or
categorization possible. There are many different angles from
how we can look at files and for each type of media this angle
will be different. For example, with photos we might want to
organize pictures by year, by event or by place. With music we
might organize by artist/album or composer/album. However,
we are limited to choosing only one classification, or facet, to
store the pictures, music and all our other files. Folders are
created to represent a particular (trail of) facets but only one
representation is possible at the same time.
It may be useful at this stage to explain some filesystem-related
terminology. In doing so, I will also argue against a common-
heard argument that states that the capabilities I am looking for
are already present in current filesystems. When we talk about a
file we mean both its contents on the disk (a series of bits) and
the label or path (a string) the filesystem uses to identify this
file. This way, there cannot be two paths pointing to the same
file. Unix systems have the notion of hard links and soft links.
A hard link is what I described above but in Unix systems a
user can create multiple hard links pointing to the same file.
Another way to look at it is that several labels point to one
series of bits on disk. As such, when an application saves to one
of these hard links, it will appear to the user that these other
files have also changed. The actual contents on disk are only
removed when all the hard links pointing to it are also removed.
When you delete only one hard link pointing to a file on disk

that has two or more hard links associated with it, the contents
on disk will remain.
The other kind of links are soft links. Instead of pointing to the
contents on disk, they point to the label of another file.
Consequentially, when the original file is moved the link is
broken. Soft links are much like Aliasses on the Mac or
Shortcuts in Windows.
The common-heard argument I mentioned earlier is of course
about these kind of links, and hard links in particular because it
seems that we can actually have multiple representations of the
same file on disk. However I have t disagree with this
argument. The first reason is that they are scarcily used in
practice even though people know of their existence. Soft links
of course have the big problem that when the original file is
moved, the link breaks and you won’t know this until the
system at a later point fails to open the soft link. Hard links
have the problem that they will make it more difficult to keep
track of what files still exist on disk somewhere. It is easy to
forget to remove one hard link in some remote folder. You may
be under the impression that the file is removed but disk space
is still being consumed. However the main issue with both of
these is the fact that they are hard to manage. They work well if
you for example collect aliasses to often-used files on the
desktop. They will not work well if you want to represent the
different categorizations (place or event) that may exist for a
few thousand photographs. If this could ever work, for sure it
would have to be done and maintained by our filesystem
automatically. The way to accomplish it currently is too labour
intensive, prone to error and requires a lot of maintenance and
time.

2.2. Files are identified by a filename
Files are identified by a filename and the folder they are kept in,
but this name alone does not show enough information about a
file. For example, a picture will have been taken at a specific
location during a specific event and there might be several
people on it. Nobody would put all this information in the name
of the file though, even though it might be very useful to do so
as a means to idenfify this particular picture on disk.
By locating the file, I mean that the computer can distill useful
information about the file, to aid us in our search queries for
example. In case of a picture, we as people can immediately see
what people are on it, but a computer can’t. When searching for
‘Diane’, a computer cannot look at the pictures itself and
recognise Diane, unless some form of facial recognition is used
which then has to be stored in the metadata of the file [7]. The
file may very well be labeled something like IMG_123.jpg but
this filename is completely uninformative of anything, it has
only been chosen by your digital camera to quarantee
uniqueness.

2.3. Choosing a location is overhead
Related to the previous problem is that choosing a location for a
file is also unnecessary overhead. We are all familiar with this
problem when we first save a document and we have to choose
a name for the file. Very often the filename is either useless for
retrieval purposes or redundant. An example: let’s say we are
keeping digital copies of a magazine like this: magazine-name/
year/month/file.pdf. Finding this file using a normal search is
only possible if we include the magazine-name, the year and the
month in the filename. All of this is redundant information
because it’s already made implicit in our directory structure.
Also, as I noted earlier, it is important to keep in mind that a
folder structure only conveys one particular kind of ordering,
out of the many available ones.

2.4. Representing Facets
Facets were already mentioned when I talked about the first
problem with hierarchical filesystems. In my opinion, proper
handling of facets is an essential requirement for any system to
succeed [10]. For instance, a website selling jewelry will most
likely present the user with different ways of browsing its
inventory. A potential customer could be searching for a nice
ring, or he might be interested in something silver. The material
(silver or gold) and the kind (ring or necklace) are different
facets of the jewelry and at different times, people may be
interested in browsing by either facet [11].
The same point can be made about digital files. Indeed we will
see that this idea is already present in third-party applications
and I think the point is important enough to be stated here
separately because the fundamental problem with current
hierarchical filesystems is that only one facet can be
represented at the same time. Taking the example of jewelry
again, we can create subfolders for kind (necklace or ring) or
subfolders for material (silver or gold), but not both because the
file representing a ring can only exist in one folder. We don't
want to create duplicate copies for obvious reasons and playing
around with aliasses will most likely end up with a mess.
We can say the same about music; facets can be artist, album
and genre or with photos; facets can be place, event or people.
The same principle applies and it will be even more obvious
that playing around with aliasses won’t work. We have
thousands of photos to manage and aliasses don't scale up to
this level.
With this new terminology in mind, we see that the problems I
stated earlier are all concerned with a lack of flexibility and
most importantly, the inability to represent multiple facets in a
logical and easy way.

3. THIRD-PARTY APPLICATIONS
When discussing some of the above issues I used the example
of photos or music files. This may seem weird to some people
because we usually don't primarily use our filesystem to
organize these kind of files [13] [14]. A lot of people use special
applications for managing our photos or our music so one might
regard these as just bad examples, stating non-existent
problems. In these applications we don't have these
aforementioned problems and limitations like naming a file or
choosing a location.
I am arguing the contrary, these are not bad examples. These are
quite excellent examples, not despite, but because these files are
usually handled by special applications. The fact that they are
means that the filesystem is bad at managing these and that
these applications fill a void that cannot be filled by the
filesystem itself. After all, what use is a filesystem if it is
inadequately suited to help us organize our important files.
People taking the time to learn how these applications work is a
testimony to the fact that the filesystem lacks in this
department. There must be something these dedicated
applications offer that the filesystem does not. We can use
applications like iTunes to organize our music or iPhoto or
Picasa [12] to organize our digital photographs but in the end
they all just manage files. Can we learn from these applications
to enhance our filesystem? In my opinion this is a rhetorical
question and I will argue that we certainly can.

3.1. Separating Location and Representation
The first characteristic of these applications is that they take
care of storage for you. Somewhere on your disk they maintain
the files and present them to you in an interface suited for the
kind of files you are dealing with. Often you can create albums,
playlists or smilar metaphors which let you put a file in multiple
places. For example, in iPhoto ‘09, photos are organized by

events, places (their location) or faces (using facial recognition
to identify people on the pictures). These can indeed be seen as
different facets of the same data. Every picture will have all
these facets, while the actual file only exists in one location on
the disk.
If we look at this characteristic from a higher perspective we
observe that there’s a fundamental difference between these
applications and the normal filesystem. These applications will
figure out where to put these files themselves without the user
having to bother with that. Essentially, they achieve a
separation of a file’s location and file’s representation. The file
itself only exists in one place on the disk but can be represented
in different facets.
The filesystem itself does not have this distinction. The location
of the file and the representation of the file are the same. This
makes it therefore impossible to present a file in different places
since its representation has a one-to-one link with its physical
representation. You can only view the file in the folder where it
is kept. Some may argue that the filesystem itself is just a
representation and that storage is handled on the hardware
level; one could use symbolic links and hard links to create
these facets but as I argued before, this functionality is hardly
ever used. From the user’s perspective, the unique path of a file
is both its location and its representation.
Previously I have stated that the ability to present a file in
multiple facets should be an important requirement of our
system. The only way to achieve this, without storing a
document multiple times on disk is to detach location from
representation. While I haven’t ever found this distinction
explicitly being made, there are a few filesystem-replacement
projects that leverage exactly this separation [4] [5], which
further lets me belief that this is important. As a sidenote, the
Lifestreams [4] system focusses on a single facet (time) and
postulates that as the most important ordering mechanism. One
of the reasons I think this system will (and has) never
succeed(ed) is because it is too limiting and forces all your
documents into a single facet which may not even suit the kind
of documents a user is working with. The user is again forced in
some kind of rigidity which is, albeit disguised as being more
flexible, equally unwanted as the current hierarchical
filesystem.
Let’s look back at the hierarchical filesystem-problems I noted
earlier. The first issue in particular (a file can only exist in one
location), can be restated: the single-location issue isn’t the real
problem, but the single way of representation is, and hence the
inablity to represent multiple facets. Only if we separate
location and representation, we have the possibility to solve this
problem.
Coming back to this idea of separating location and
representation, we observe that these third-party applications
are all concerned with the representation while they handle the
storage for you. If we would devise a good system, we should
do the same. Storage should be something the system does
without needing any input from the user such as choosing a
destination folder or a filename. The first priority for a user
should be to save the file to disk, later he or she can concern
himself with a specific categorization.

3.2. Organizing by Metadata and Tags
The benefit these third-party applications have is that they have
been specifically designed to handle a certain kind of files and
they know (or at least think think they do) what categories
make sense. It is at the core their usage of the metadata
associated with these files that allows them to present multiple
facets to the user. Faces and places for photos or album name
and artist are all good examples of relevant metadata for these
files. Metadata is used here to cover the different facets that

make sense. When files are no longer identified by their unique
path, the only way to distinguish one file from the other is using
metadata.
Pictures taken with digital cameras often have these obscure
names like IMG_123.jpg. Nobody ever bothers to change this
name to something more meaningful and still we are able to
find the pictures we need, using the metadata and the facets our
photo-management application offers us. For music we could
make the same case, where songs can be named ‘Track 1’
instead of conveying something useful.
How then is this metadata structured? If we take iTunes as an
example, we see its metadata is divided into useful facets like
‘artist’ or ‘album’. These values can be changed for every
individual file, which gives the user a lot of flexibility. For
example, one file can have ‘Mozart’ as a composer while
another can have ‘Mozart’ as the artist without the system
protesting.

4. PRELIMINARY CONCLUSIONS
We have identified two key aspects that our new filesystem
should support. First, this system should manage the storage of
files for us. Second, it must use metadata to describe and
identify files.

4.1. Handling Storage
In traditional hierarchical filesystems, when we save a file, we
want to save it in a place we can find it back later and we use
some kind of ordering that makes sense, choosing one of the
relevant facets and discarding the other facets. Instead we
should let the system save a file and independently from that,
define those facets that make sense to us. How our system
exactly handles this storage should be of no concern to the user.
Any storage system that makes sense could be used.
Traditionally, saving a file is done by giving the file a name and
choosing some folder to save it in. However, as we noted in
hierarchical filesystems, a filename is either too restrictive or
redundant and a folder structure is too limited because it only
covers one trail of facets. The aforementioned dedicated
applications do not even use the filenames to describe files,
IMG_123.jpg for photos is a good example here. For them a
filename is something that is part of the location-layer, not the
representation-layer. Since we want to follow the same
approach, we too should remove the need to name a file as well
as the need to choose a location for the file.

4.2. Handling Metadata
As said before, when files can no longer be identified by their
unique path, the only way to distinguish one file from the other
is using metadata. The question of how to structure metadata
therefore becomes very important. We already say how these
third-party applications structure their metadata, but a lot of
research has been done on the subject, and the proposed
solutions are very different. I think it is therefore appropriate to
take a good look at this research and to see what way to
structure metadata would suit us best.

5. HOW TO STRUCTURE METADATA
Metadata can take the form of tags, the last one has been
popularized by online communities such as Flickr [15] and
Delicious [16]. Many papers acknowledge that metadata is
important to find a better hierarchical filesystem-alternative
[10] [17]. Structuring this metadata as a list of tags is an often-
heared solution [1] [13] [18].

5.1. Adding metadata with tags
Tags are keywords describing the contents or context of a file.
A user can choose any combination of keywords and the
obvious benefit is the freedom a user has. The user can choose

his own keywords and describe whatever facet he sees fit.
‘Gold’ and ‘necklace’ could be two tags describing the
aforementioned jewelry. Whether a user is organizing pictures,
music or files in general, all these types of files can be
annotated with metadata and tags seem to be perfectly suited
for this.
As a side note, the complete path of a file could very well
translate to the tags that are applicable to this file. If we take the
magazine-ordering system, we observe that each directory in
the path is actually a tag by itself. For example, magazine-
name/year/month/file.pdf would translate to { ‘magazine-
name’, ‘year’, ‘month’ }. This gives us a very reasonable set of
tags to identify a particular issue of a magazine. With this
directory structure we’ve only captured one facet of ordering,
one by date, but another way could be ordering by topic for
example, which we could also capture with tags.
Online, these tags are primarily used to aid a search query, but
searching is not always enough, Cutting, Karger, Pedersen and
Tukey in their paper, “Scatter/gather: A cluster-based approach
to browsing large document collections” [21] have some
excellent points on this subject. Often, you might not be
searching for something in particular but you might want an
overview of what you have on a particular subject.
Taking music as an example, we might want to view all albums
we have of a particular composer. A flat list of tags will present
a problem here because there is no way of telling what a single
tag stands for, is it the artist, the album name or the composer?

5.2. Structuring metadata
There are two problems with the previously described simple
tag system. The first problem is that when there’s no ordering in
these tags, identifying the proper tags becomes increasingly
difficult when the list of all tags grows to a few hundred, or
potentially more, items. There will be no way of telling if tags
are concerned with the same subject or if there’s some other
kind of ordering. The second problem is that there’s no way of
telling what these tags stand for. As I claimed earlier, I think it
is important that a system is able to describe different facets of
a file and while tags can describe these, there’s no way the
system is able to magically know that ‘gold’ and ‘silver’ are
actually instances of the same facet while ‘gold’ and ‘necklace’
are not. In short, we need semantic information about the tags,
as previous research has also indicated.
When one looks for scientific studies trying to structure
metadata or tags in general, one undoubtedly ends up finding a
lot of research on the topic of creating ontologies, tree-like
structures describing the the metadata in a filesystem ([9], [17],
[18] and more). This should then both provide a kind of
ordering and provide semantic information about tags making it
possible to classify ‘gold’ and ‘silver’ as being related.
It is certainly not a new idea to classify or group tags, using for
example a system such as WordNet [20]. This usually takes the
form of some kind of a tree-like structure that represents an is-a
relationship between tags [17] [18]. However I will argue that,
even ignoring the fact that it may be considered overkill for a
personal filesystem, it has some major deficiencies and as such
is completely unsuited for our needs.

5.3. Structuring metadata using ontologies
The benefits of having a semantic tree describing our tags are
obvious. When we know that ‘Bob Dylan’ is in fact an artist we
can be much more specific in our queries. While such a tree
structure has its benefits, it will have to be created
automatically or it might be too much work for the average
user. This is however not the main issue.
Researchers have been fascinated with creating ontologies for
many years (I already mentioned a few, like [9],[17],[18],[19])

which are supposed to classify every relevant entity. Bringing
this concept ‘down’ to the level of a desktop filesystem presents
some difficulties in my opinion. There does not seem to be
much literature to support my claim, but I will argue here why I
think this is the case. One paper that comes close is [10].
What a system thinks the correct classification is may well be
perfect for some person and completely inaccurate for another
person and we personally may know things or relationships
between things the system cannot ever know. John Doe can be a
friend of ours so we can classify the tag ‘John Doe’ as being a
friend but unless we tell the system so, it will never be able to
properly classify him. While a very liberal system may well be
able to cope with this problem, even these problems are not the
main issue.
What an hierarchical tag-tree (possibly based on some
ontology) cannot possibly capture is that different contexts can
give different meaning to the same tag. In one context ‘John
Doe’ may be classified as a writer (because the system knows
he wrote several books), but in another context we might have a
video of a presentation he gave on a conference where you
would consider him to be the presenter, not the writer. Similar
examples can be found in other domains but the key point is
that a single tag can mean different things in different contexts.
Let’s suppose I am a football lover and I also happen to be a
web-developer, the keyword Ajax can mean two completely
different things in my system. I may have been to a match,
taken some pictures and tagged them with the word Ajax. Also I
may have tagged a few development-projects of mine with the
same tag. When I’m looking for Ajax, as in the football club, I
will not be interested in my development projects. One last
thing I will say on this subject is that ontologies change. What
used to be Eastern-Europe is now part of the European Union
and Yugoslavia does not even exist anymore. Things change,
and ontologies are bad in coping with this change.
We can only conclude that a tree-like structure based on some
ontology is inadequate. It provided us with the classification we
needed, but we also end up with a rigid structure and rigidity
lies at the heart of hierarchical filesystems, something we were
trying to get away from. If our main criticism of (possibly
ontology-based) hierarchical tags lies in the fact that it is bad in
dealing with different contexts we have to take a fundamentally
different approach. Every ‘global’ system of truth we devise to
give meaning to tags will suffer from the same flaws.

5.4. Structuring metadata on a per-file basis
We must realize that there is not a single truth and that we
cannot have a single tag-ordering system for our entire
filesystem. The solution to this is of course to keep both tags
and their meaning on a per-file basis. Metadata like
‘writer=John Doe’ should be applied to one file and
‘presenter=John Doe’ can be applied to another file. For one
file, Ruby can be set to be a gem and for another file it can be
set to be a programming language. When the system is asked to
display all files that have Ruby as their language, files about
Ruby as a gem will be left out.
If this sounds as being very familiar, you would be right. It is
the solution that is used by third-party applications like iTunes
and it basically is a dictionary of key-value pairs per individual
file (sometimes better known as a hash table). One could
wonder if we are still talking about Tags, but basically it is all a
variation on the same idea. A key-value pair is conceptually the
same as a Tag with a name (the value) and a meaning given to it
(the key) and could even be considered as tuples. However
choosing the right representation for this in the storage-layer is
irrelevant for the user. There is one thing we have to add to this
idea. We do not want a strict key-value ordering because there
can be multiple values for the same key. When applying tags for

the keywords in scientific papers, we will need multiple tags
with the key being ‘keyword’, one will not suffice. The same
can be said of people in photographs or albums in music files.
In iTunes however, a user can only change the value of the key
‘artist’ for example, but not the key itself. As an anology, our
system will also allow the user to define custom key. This is
because we don’t only handle music files or videos, but we
invite the user to order all his information in our system. As
such, we don't know what keys make sense. I believe it turns
out that the solution researchers have been looking for so long
has already been found and utilized by the third-party
applications. The only thing we need to do is to add just a more
flexibility as to what keys the user can define.

6. A SOLUTION
Earlier I already defined the two most important characteristics
of our system: a separation between location and representation,
and a focus on metadata. In the previous chapter we found a
simple answer to the question of how to structure metadata. The
main problem was that tags can have multiple meanings but
still it was needed to give semantic information to these tags.
As the reader may have observed, the proposed system is
primarily concerned with providing the user a useful interface.
With this in mind, our ‘filesystem’ could very well be solved on
an application level. Our filesystem could be a stand-alone
application just like these third-party applications. It will make
adaptation a lot easier since there will be no problem with
legacy support.
The proposed system is still a very abstract one. To better
understand the concept it may be useful to visualize the system
as a flat collection of files, with a table for metadata attached to
each file. These tables would have two colums. The first
column lists the different keys like ‘album’, ‘artist’ or ‘author’.
The second column displays the value, or tags given to a file.
For example, ‘Mozart’ would be in the second column and the
first column in the same row would say ‘composer’.
Another way to view our system is in terms of a database. This
database would consist of only one large table. The rows in this
table represent the files and the columns represent the keys such
as ‘album’ or ‘author’. As the user starts to add tags, new
columns will be added to the table. Whether this is an efficient
means of storage remains to be seen since most cells in the
table will remain empty. Indeed only a small subset of files will
have an ‘author’-tag defined and the same goes for every other
tag. It is however a nice way to visualize the system. The
different views we can have on the data then easily translate to
SQL queries. For example, a useful view could for example
give the user all albums of a particular composer and this easily
translates in an SQL query if the have the database structure I
proposed earlier.
One may wonder if there is anythig new as such in the system I
propose. Databases have been designed with exactly these
capabilities in mind so couldn’t the entire contents of this paper
be replaced with the sentence ‘we will use a database instead’?
It will not come as a surprise that I disagree with this. Before
we postulate something as the ultimate answer we should
reason as to why it is so; starting with the acknowledgement
that we need to represent the different facets of files, to tags that
should have semantic meaning by themselves. These can be
seen as the requirements for our system. Luckily we can fulfill
these requirements adapting already existing systems. As a
sidenote, because databases are so flexible, I suspect that
whatever solution we would have come up with, it would be
possible to implement it on top of a database.
The idea of experessively using a database to organize a
filesystem is not new. There is one paper [22] that came very
close to what I proposed in this paper. In the end however it

represented the different facets using tags but not on a per-file
basis. The reader will understand the fundamental difference
compared to my solution.
Since the previous chapter outlined a solution for the problems,
we need to test the idea against the requirements we stated
earlier; the problems with current hierarchical filesystems. How
does our per-file tagging system stand up to this?

6.1. A unique path to a file
We borrowed the idea of the storage-layer being responsible for
storage from the aforementioned third-party applications. Using
the same model as they do, we will have solved the problem of
storing multiple copies of the same file. When multiple
categorizations make sense, we can use the metadata we keep
for each file to present the user with an appropriate view.
For example, when we record ‘events’, ‘faces’ and ‘places’ as
tags it would be possible for the system to present all tags
labeled as being and ‘event’ or a ‘place’ and of each of these
tags find all the appropriate images.

6.2. Files are identified by a filename
Filenames are currently being used for recognition-purposes
and for uniquely identifying a file on disk. File-recognition is
handled in our system by the collection of tags applied to a file
with which we can capture all facets of a file, not only a subset.
As such, the only remaining function of a filename is for
storage purposes, which is now handled by the system
independent of the user. Thus, we are no longer concerned with
filenames at all.

6.3. Choosing a location is overhead
A file path often captures a single facet of a group of files
(music classified by artist for example). We no longer have to
choose what facet makes the most sense because all this
information will be contained in the file’s tags. The need to
choose an appropriate directory structure disappears completely
because the user is no longer in charge of storing the file. All
problems with searching and single-categorization hence
disappear.

Bloehdorn and Völkel in their paper “TagsFS” described the
problem in the context of organizing scientific papers using
keywords as the organizational-facet. Over time two separate
directories may grow: ir/semweb and semweb/ir. When we look
in one of these folders, we will never see the other folder while
there could be interesting papers there. Both keywords make
sense, but we cannot see the contents of two folders at the same
time in one place. Instead if we would have used the filesystem
proposed in this paper and we would have implemented it in a
database, a view could use a simple SQL query to collect papers
with both keywords. In traditional filesystem is however
fundamentally impossible because location and representation
are not separated in hierarchical filesystems; we cannot easily
collect the contents of two folders in one view.

Our system however, will be perfectly capable to do so using a
few simple operations because we have separated location from
representation. The other issue with choosing a location,
namely the duplicty between a filename and the path will also
disappear because our system replaces both with tags
describing these characteristics in metadata.

7. CONCLUSION
My research leads to the conclusion that the problems with
hierarchical filesystems can mostly be brought down to its
inability to separate between location and representation. By
location, I mean a file’s location on disk, identified by a unique
path-name and by representation I mean the way and the
context in which a file is presented to the user. In a traditional
filesystem these two are the same.

Some may note that current filesystems already have this
separation, namely the logical address versus the physical
address. This is however a one-to-one releationship and not a
separation in the way this paper has defined it.
In finding a suitable alternative to the traditional (hierarchical)
filesystems, an important criteria was the ability of the system
to deal with different facets of a file. Third-party applications
for managing music or photos use exactly this idea to present
the user with relevant views like ‘events’, ‘faces’ and ‘places’
which are all useful facets of digital photographs. Albums or
playlists fall in the same category and are conceptually just
facets.
In our proposed filesystem we need to achieve a separation
between location and representation. The system should be
concerned with naming a file and choosing a location for it and
metadata should be used to identify a file since a filename and a
file’s location will have lost their meaning.
Metadata should be kept on a per-file basis and not in using
some kind of ontology-based tree-like structure as what many
papers are proposing. The main criticism to this approach is that
different tags can mean different things in different contexts and
when there is a single ordering, this system will break down.
Keeping metadata on a per-file basis is the only thing that can
work. Looking at how these third-party applications store their
data, we discovered that this is exactly what they are doing. In
iTunes for example, metadata can be edited for every individual
file for optimal flexibility while iTunes at the same time uses
this information collect all ‘artists’ and ‘albums’.
Our system will be keeping a dictionary for every individual
file and any graphical view can be laid out on top of it to
present an appropriate view. Storing, naming and locating files
on disk is then handled by the system itself. The solution as
presented here is in concept a simple one, one that is already
being used by the third-party applications we discussed. With
this, we will have created a system that separates location from
representation and which has optimal flexibility because it
acknowledges that files have different facets, all of which can
be described with ease.

8. FUTURE WORK
Traditional hierarchical fileystems are as we know organizated
around folders containing subfolders. The way files are
presented in the user-interface is also done using the same
metaphor.
Our new filesystems has no concept of folders and will have to
serve the user a different kind of interface. The interface could
maybe be very customizable and an easy way will have to be
found to enter the all-important metadata.
No doubt applications like iTunes, iPhoto, Picasa and others
can serve as inspiration as to what kinds of interfaces the user
could comfortably work with. This paper outlined the basic
concepts of such a filesystem. Future research could be
conducted to provide a user-interface on top of this foundation.
When the idea presented in this paper is implemented on the
application level as a stand-alone application, the traditional
filesystem will still sit under our system. There might be
interesting ways to combine both concepts.

9. REFERENCES
[1] S. Bloehdorn and M. Volkel, “TagFS—tag semantics

for hierarchical file systems”. in Proc of the 6th
International Conference on Knowledge Management
(I-KNOW 06), 2006.

[2] D. K. Gifford, P. Jouvelot, M. A. Sheldon and J. W.
O’Toole. Semantic file systems. ACM SIGOPS

Operating Systems Review, 1991 vol. 25 (5) pp.
16-25

[3] S. Fertig, E. Freeman and D. Gelernter. “Lifestreams:
an alternative to the desktop metaphor”. Conference
on Human Factors in Computing Systems, 1996 pp.
410-411

[4] E. Freeman and D. Gelernter. “Lifestreams: A storage
model for personal data”. SIGMOD Record, 1996
vol. 25 (1)

[5] A. Agarawala. “Enriching the Desktop Metaphor with
Physics, Piles and the Pen”. Honeybrown.ca, 2006

[6] iTunes 8. Apple Inc, 2009 (http://www.apple.com/
itunes)

[7] iPhoto ‘09. Apple Inc, 2009 (http://www.apple.com/
iphoto)

[8] C. Soules and G. Ganger. “Why can’t I find my files?
New methods for automating attribute assignment.”
Proc. Ninth workshop on Hot Topics in Operating
Systems, USENIX Association, May 2003.

[9] H. Ngo, C. Bac, F. Silber-Chaussumier and Q. Le.
“Towards ontology-based semantic file systems.”
Proceedings of the 5th International Conference on
Research, 2007

[10] W. Jones, A. Phuwanartnurak, R. Gill and H. Bruce.
“Don't take my folders away!: organizing personal
information to get Things done”. Conference on
Human Factors in Computing Systems, 2005, pp.
1505 - 1508

[11] S. Henderson. “Genre, task, topic and time: facets of
personal digital document management”. Proceedings
of the 6th ACM SIGCHI New Zealand chapter's
international conference on Computer-human
interaction: making CHI natural, 2005, pp. 75-82

[12] Google Picasa http://www.google.com/picasa
(Visited March 17, 2009)

[13] A. Girgensohn, J. Adcock, M. Cooper, J. Foote and
L. Wilcox. “Simplifying the management of large
photo collections”. Proc. Human-Computer
Interaction pp. 196-203

[14] K. Rodden and K. Wood. “How do people manage
their digital photographs?” Proceedings of the
SIGCHI conference on Human factors in computing
systems, 2003, pp. 409-416

[15] Flickr: http://www.flickr.com (visited March 4,
2009)

[16] Delicious: http://delicious.com/ (visited May 18th,
2009)

[17] E. Stoica, M. A. Hearst and M. Richardson.
“Automating creation of hierarchical faceted
metadata structures”. Proceedings of NAACL HLT,
2007, pp. 244–251

[18] C. Van Damme, M. Hepp and K. Siorpaes.
“Folksontology: An integrated approach for turning
folksonomies into ontologies. Bridging the Gap
between Semantic Web and Web”, 2007, vol. 2 pp.
57–70

[19] H. Ngo, C. Bac and F. Silber-Chaussumier.
“Enhancing Personal File Retrieval in Semantic File
Systems with Tag-Based Context”. www-inf.it-
sudparis.eu, 2008

[20] Wordnet. http://wordnet.princeton.edu/ (visited
March 4, 2008)

[21] D. Cutting, D. Karger, J. Pedersen and J. Tukey.
“Scatter/gather: A cluster-based approach to browsing
large document collections”. Proceedings of the 15th
annual international ACM SIGIR conference on
Research and development in information retrieval,
1992, pp. 318-329

[22] O. Gorter. “Database file system: An alternative to
hierarchy based file systems”. Master thesis,
University of Twente, 2004

http://www.flickr.com
http://www.flickr.com
http://wordnet.princeton.edu
http://wordnet.princeton.edu

