Boolean algebra laws

Nayuki Minase 2012-05-10

http://nayuki.eigenstate.org/page/boolean-algebra-laws

0 Notation

The following notation is used for Boolean algebra on this page, which is the electrical engineering notation: The precedence is AND (high), XOR (medium), OR (low).

False0True1NOT x \bar{x} x AND y $x \cdot y$ x OR yx + yx XOR y $x \oplus y$

Examples:

$x+y\cdotz$	means	$x+(y\cdotz)$
$x \oplus y \cdot z$	means	$x\oplus(y\cdotz)$
$x + y \oplus z$	means	$x+(y\oplusz)$

1 Basic laws

1.0 Constants

NOT:	AND:	OR:	XOR:
$ar{0}=1$	$0\cdot 0=0$	0 + 0 = 0	$0\oplus 0=0$
$ar{1}=0$	$0\cdot 1 = 0$	0+1 = 1	$0\oplus 1~=~1$
	$1\cdot 0\ =\ 0$	1 + 0 = 1	$1\oplus 0\ =\ 1$
	$1\cdot 1=1$	1 + 1 = 1	$1\oplus 1\ =\ 0$

1.1 Constant and variable

NOT:	AND:	OR:	XOR:
(None)	$0\cdot x=0$	0+x=x	$0\oplus x=x$
	$1\cdot x=x$	1 + x = 1	$1\oplus x=ar{x}$

1.2 One variable

NOT:	AND:	OR:	XOR:
$ar{ar{x}}=x$	$x\cdot x=x$	x + x = x	$x\oplus x=0$
	$x\cdot ar{x}=0$	$x+ar{x}=1$	$x\oplus ar{x}=1$

1.3 XOR

XOR can be defined in terms of AND, OR, NOT:

 $egin{aligned} x\oplus y\ =\ (x\cdotar y)+(ar x\cdot y)\ x\oplus y\ =\ (x+y)\cdot(ar x+ar y)\ x\oplus y\ =\ (x+y)\cdot\overline{(x\cdot y)} \end{aligned}$

1.4 Various

	Commutativity	Associativity	Distributivity
AND	$x\cdot y=y\cdot x$	$(x\cdot y)\cdot z=x\cdot (y\cdot z)$	$x\cdot(y+z)=(x\cdot y)+(x\cdot z)$
OR	x+y = y+x	(x+y)+z=x+(y+z)	$x+(y\cdot z)=(x+y)\cdot(x+z)$
XOR	$x\oplus y=y\oplus x$	$(x\oplus y)\oplus z=x\oplus (y\oplus z)$	$x\cdot(y\oplus z)=(x\cdot y)\oplus(x\cdot z)$

1.5 De Morgan's laws

 $\begin{array}{ll} \text{NAND} & \overline{x \cdot y} \, = \, \bar{x} + \bar{y} \\ \text{NOR} & \overline{x + y} \, = \, \bar{x} \cdot \bar{y} \end{array}$

2 Redundancy laws

The following laws will be proved with the basic laws.

Counterintuitively, it is sometimes necessary to complicate the formula before simplifying it.

2.0 Absorption

$x+x\cdot y=x$	$x\cdot (x+y)=x$
Proof:	Proof:
$x + x \cdot y$	$x \cdot (x+y)$
$= x \cdot 1 + x \cdot y$	$= (x+0)\cdot (x+y)$
$= x \cdot (1+y)$	$= x + (0 \cdot y)$
$= x \cdot 1$	= x + 0
= x	= x

2.1 (No name)

$x+\bar{x}\cdot y=x+y$	$x\cdot(\bar x+y)=x\cdot y$	$x\cdot y + x\cdot \bar{y} = x$	$(x+y)\cdot(x+\bar{y})=x$
Proof:	Proof:	Proof:	Proof:
$x+ar{x}\cdot y$	$x\cdot (\bar x+y)$	$x\cdot y+x\cdot ar y$	$(x+y)\cdot(x+\bar{y})$
$= (x+ar x)\cdot (x+y)$	$= x \cdot ar{x} + x \cdot y$	$=x\cdot(y+ar{y})$	$= x + (y \cdot ar y)$
$=1\cdot(x+y)$	$= 0 + x \cdot y$	$= x \cdot 1$	= x + 0
= x + y	$= x \cdot y$	= x	= x

2.2 Consensus

$x\cdot y+ar x\cdot z+y\cdot z=x\cdot y+ar x\cdot z$	$(x+y)\cdot (ar x+z)\cdot (y+z) = (x+y)\cdot (ar x+z)$
Proof:	Proof:
$x\cdot y+ar x\cdot z+y\cdot z$	$(x+y)\cdot (\bar x+z)\cdot (y+z)$
$= x \cdot y + ar x \cdot z + 1 \cdot y \cdot z$	$= \ (x+y) \cdot (\bar{x}+z) \cdot (0+y+z)$
$= x \cdot y + ar{x} \cdot z + (x + ar{x}) \cdot y \cdot z$	$= \ (x+y) \cdot (\bar{x}+z) \cdot (x \cdot \bar{x}+y+z)$
$= x \cdot y + ar{x} \cdot z + x \cdot y \cdot z + ar{x} \cdot y \cdot z$	$= (x+y)\cdot (ar x+z)\cdot (x+y+z)\cdot (ar x+y+z)$
$= x \cdot y + x \cdot y \cdot z + ar x \cdot z + ar x \cdot y \cdot z$	$= (x+y)\cdot(x+y+z)\cdot(ar{x}+z)\cdot(ar{x}+y+z)$
$= x \cdot y \cdot 1 + x \cdot y \cdot z + ar x \cdot 1 \cdot z + ar x \cdot y \cdot z$	$= (x+y+0) \cdot (x+y+z) \cdot (ar{x}+0+z) \cdot (ar{x}+y+z)$
$=x\cdot y\cdot (1+z)+ar x\cdot z\cdot (1+y)$	$=\ (x+y+0\cdot z)\cdot (\bar x+z+0\cdot y)$
$= x \cdot y \cdot 1 + ar{x} \cdot z \cdot 1$	$=(x+y+0)\cdot(\bar{x}+z+0)$
$= x \cdot y + ar{x} \cdot z$	$= \ (x+y) \cdot (\bar{x}+z)$